Redox Behavior of Copper Oxide /Zinc Oxide Catalysts in the Steam Reforming of Methanol studied by in situ X-ray Diffraction and Absorption Spectroscopy
نویسنده
چکیده
The bulk structure of copper in various binary Cu/ZnO catalysts for steam reforming of methanol under activation and working conditions is studied by in situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The evolution of bulk phases from CuO/ZnO precursors during activation with hydrogen was studied using temperature programmed reduction (TPR) (448 – 523 K, 2 vol-% H2 with and without water vapor). With decreasing copper content the onset of reduction is shifted from 473 K (pure CuO) to 443 K (40 mol-% Cu) accompanied by a decrease in Cu crystallite sizes (from 210 Å to 40 Å). Using time -resolved in situ XANES measurements at the Cu K edge during TPR experiments the degree of reduction was monitored. It is shown that Cu(I) oxide forms prior to Cu. Adding oxygen to the feed gas leads to the formation of a mixture of Cu(II) and Cu(I) oxide accompanied by a complete loss of activity. After switching back to steam reforming conditions a higher activity is attained while the catalyst shows an increased Cu crystallite size (up to 40%). EXAFS measurements at the Cu K and the Zn K edge indicate a structural disorder of the Cu particles in the medium range order based on increasing Debye-Waller factors for higher Cu-Cu shells . Furthermore, the dissolution of Zn atoms (up to ~ 4 mol-%) in the copper lattice is detected. Upon oxidation/reduction cycles activity is increased, the disorder in the copper particles increases, and Zn segregates out of the copper bulk. A structural model is proposed which ascribes the enhanced activity to structurally disordered (strained) copper particles due to an improved interface interaction with ZnO.
منابع مشابه
In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol
Structure-activity relationships of a nanostructured Cu/ZrO2 catalyst for the steam reforming of methanol (MSR) were investigated under reaction conditions by in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) combined with on-line mass spectrometry (MS). Temperature programmed activation by reduction in hydrogen or by reduction in a mixture of methanol and water (feed) was...
متن کاملMethanol Steam Reforming Catalyzing over Cu/Zn/Fe Mixed Oxide Catalysts
Methanol steam reforming plays a pivotal role to produce hydrogen for fuel cell systems in a low temperature range. To accomplish higher methanol conversion and lower CO production, the reaction was catalyzed by CuZnFe mixed oxides. Various ratios of Fe and Cu/Zn were coprecipitated in differential method to optimize the CuZnFe structure. The sample containing 45Cu50Zn5Fe (Wt. %) revealed its m...
متن کاملMicrostructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming - A comparative study
Microstructural characteristics of various real Cu/ZnO/Al2O3 catalysts for methanol steam reforming (MSR) were investigated by in situ X-ray diffraction (XRD), in situ X-ray absorption spectroscopy (XAS), temperature programmed reduction (TPR) and electron microscopy (TEM). Structure–activity correlations of binary Cu/ZnO model catalysts were compared to microstructural properties of the ternar...
متن کاملPdZn/Pd(111) surface alloys as model catalysts for methanol steam reforming
Pd supported on ZnO has recently raised great interest as a catalyst for methanol steam reforming. Different from unsupported Pd, Pd-ZnO shows high selectivity and good conversion towards CO2 and hydrogen [1]. The difference is attributed to the formation of a PdZn alloy under reaction conditions, but there is still limited knowledge on the exact surface structure/composition and reaction mecha...
متن کاملFabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method
In this research zinc oxide (ZnO) nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis), Fourier transform infra-red (FT-IR) and energy dispersive X-ray (EDX) spectroscopy. The structure of nanoparticles was studied using XRD pattern. The c...
متن کامل